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NEW FACTORIZABLE DISCRETIZATIONS FOR THE EULER EQUATIONS

BORIS DISKIN� AND JAMES L. THOMASy

Abstract. A multigrid method is de�ned as having textbook multigrid e�ciency (TME) if solutions to

the governing system of equations are attained in a computational work that is a small (less than 10) multiple

of the operation count in one target-grid residual evaluation. A way to achieve TME for the Euler and Navier-

Stokes equations is to apply the distributed relaxation method thereby separating the elliptic and hyperbolic

partitions of the equations. Design of a distributed relaxation scheme can be signi�cantly simpli�ed if the

target discretization possesses two properties: (1) factorizability and (2) consistent approximations for the

separate factors. The �rst property implies that the discrete system determinant can be represented as a

product of discrete factors, each of them approximating a corresponding factor of the determinant of the

di�erential equations. The second property requires that the discrete factors reect the physical anisotropies,

be stable, and be easily solvable.

In this paper, discrete schemes for the nonconservative Euler equations possessing properties (1) and (2)

have been derived and analyzed. The accuracy of these scheme has been tested for subsonic ow regimes

and is comparable with the accuracy of standard schemes. TME has been demonstrated in solving fully

subsonic quasi-one-dimensional ow in a convergent/divergent channel.

Key words. Euler equations, textbook multigrid e�ciency, distributed relaxation, factorizable schemes

Subject classi�cation. Applied and Numerical Mathematics

1. Introduction. Full multigrid (FMG) algorithms [3, 4, 13, 22, 26, 27] are the fastest solvers for

elliptic problems. These algorithms can solve a general discretized elliptic problem to the discretization

accuracy in a computational work that is a small (less than 10) multiple of the operation count in one

target-grid residual evaluation. Such e�ciency is known as textbook multigrid e�ciency (TME) [5, 6].

Extending TME to solutions of the Navier-Stokes equations is a challenging task because the Navier-Stokes

equations form a system of coupled nonlinear equations that is not fully elliptic, even for fully subsonic ow,

but contains hyperbolic partitions. TME for the Navier-Stokes simulations can be achieved if the di�erent

factors contributing to the system could be separated and treated optimally, e.g., by multigrid for elliptic

factors and by downstream marching for hyperbolic factors. One of the ways to separate the factors is the

distributed relaxation method proposed in [3, 4]. The general framework for achieving TME in large-scale

computational uid dynamics (CFD) applications has been discussed in [9, 25].

The major di�culty in e�ciently solving the Navier-Stokes equations is encountered with the inviscid

(Euler) subset; thus we restrict ourselves to the Euler equations here. The approach to the solution of

the Euler equations motivating this paper is based on an FMG algorithm with multigrid cycles employing

distributed relaxation. It is envisioned that the FMG-1 algorithm (an FMG algorithm with one multigrid

cycle per level) will provide solutions with algebraic error below the level of the discretization error. Another

useful characteristic of the solution process is the possibility to rapidly converge residuals to the machine zero.

�ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, Virginia 23681 (email: bdiskin@icase.edu). This

research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while

the author was in residence at ICASE, NASA Langley Research Center, Hampton, Virginia 23681
yComputational Modeling and Simulation Branch, Mail Stop 128, NASA Langley Research Center, Hampton, VA 23681

(email: j.l.thomas@larc.nasa.gov).
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The latter property is not necessary for achieving TME, but it is highly favored in practical applications.

The distributed relaxation approach relies on a principal linearization of the governing system of non-

linear equations. The principal linearization is derived from the full Newton linearization by removing some

unimportant (subprincipal) terms. The principal terms of a linear scalar equation are the terms that make

major contributions to the residual per a unit change in the solution variable. The principal terms thus

generally depend on the scale, or mesh size, of interest. For example, the discretized highest derivative terms

are principal on grids with small enough mesh size. For a discretized system of di�erential equations, the

principal terms are those that contribute to the principal terms of the determinant of the matrix operator.

Design of a distributed relaxation scheme for the Euler equations can be signi�cantly simpli�ed if the

target discretization possesses two properties:

(1) The principal linearization of the target discrete system is factorizable [4, 5, 6, 19, 20], i.e., the

discrete system determinant can be represented as a product of discrete scalar factors, each of them

approximating a corresponding factor of the determinant of the di�erential equations.

(2) The obtained scalar factor discretizations reect the physical anisotropies and are stable and easily

solvable.

The main subject of this paper is derivation of new discrete schemes for the nonconservative Euler equations

possessing properties (1) and (2). Corresponding conservative discrete schemes and distributed relaxation

for them have been considered in [15].

Properties (1) and (2) are automatically obtained with staggered-grid discretizations for incompressible

and slightly compressible ow. Textbook e�cient multigrid solvers employing factorizable staggered-grid dis-

cretizations of the nonconservative formulations and distributed relaxation have already been demonstrated

for high-Reynolds-number viscous incompressible [11, 24] and subsonic compressible [23] ow regimes.

Factorizable schemes for the conservative Euler equations on collocated grids have been derived and

implemented in [17, 18, 19, 20, 21]. The multigrid solvers in these references employed Collective Gauss-

Seidel rather than distributed relaxation. The subsonic-ow convergence rates observed in multigrid V cycles

were quite fast (about 0:3 per cycle), far overcoming the theoretical limit for nonfactorizable schemes, and

were only slightly grid dependent. However, these rates are still not fast enough to guarantee convergence

in an FMG-1 algorithm. The rates also deteriorate somewhat in transonic and supersonic computations and

for grids with high aspect ratios. These facts emphasize the need to employ distributed relaxation.

This paper explores new collocated-grid schemes for the compressible Euler equations that satisfy prop-

erties (1) and (2) in multiple dimensions. A typical di�culty associated with this type of scheme is a

poor measure of h-ellipticity (stability) in the discrete approximation for the full-potential factor of the

system determinant. By de�nition (see [2, 4, 26]), a discrete scalar (not necessarily elliptic) operator

L[u] possesses a good measure of h-ellipticity, if the absolute value of its symbol jL(w)j is well sepa-

rated from zero for all high-frequency Fourier modes. The operator symbol is de�ned as the operator

response on a discrete Fourier mode: L[ei(w�j)] = L(w)ei(w�j), where j = (jx; jy; jz) are the grid indexes

and w = (!x; !y; !z); 0 � j!xj; j!yj; j!zj � � are normalized Fourier frequencies. For elliptic operators,

high-frequency Fourier modes are the modes satisfying max(j!xj; j!yj; j!zj) � �=2; for nonelliptic operators,

high-frequency Fourier modes are those oscillating in the characteristic directions.

Lack of h-ellipticity often implies ine�cient relaxation (i.e., a poor smoothing factor for some high-

frequency error components) and slow convergence rates in multigrid cycles. Several approaches to overcome

the di�culty (mainly in applications to incompressible ow equations) have been proposed (e.g., [1, 10]).

Some of the approaches are associated with introduction of additional terms increasing the measure of
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h-ellipticity, others with averaging spurious oscillations.

The factorizable schemes for multidimensional compressible ow equations proposed in this paper in-

clude a mechanism to improve the h-ellipticity measure by obtaining any desired discretizations for the

full-potential factor. TME with an FMG solver employing the distributed relaxation method has been

demonstrated for two schemes approximating the Euler equations for a quasi-one-dimensional subsonic ow

in a convergent/divergent channel.

The paper is organized as follows: The Euler equations for inviscid compressible ow problems are de-

�ned in Section 2. The idea of distributed relaxation is briey explained in Section 3. Section 4 presents the

derivation of the new factorizable schemes for the Euler equations. A model problem, the one-dimensional

subsonic Euler equations, is presented in Section 5 together with a comparative analysis of linear discretiza-

tion schemes. Description of the multigrid solver ingredients is in Section 6 followed by results of nonlinear

numerical tests with a subsonic ow in a convergent/divergent channel reported in Section 7. Section 8

contains concluding remarks.

2. Euler Equations. The steady-state three-dimensional Euler system of compressible ow equations

can be written as

R(q) �

8>>>>>><
>>>>>>:

u@xu+ v@yu+ w@zu+
1
�
@xp = 0;

u@xv + v@yv + w@zv +
1
�
@yp = 0;

u@xw + v@yw + w@zw + 1
�
@zp = 0;

�c2@xu+ �c2@yv + �c2@zw + u@xp+ v@yp+ w@zp = 0;
c2


@xu+

c2


@yv +

c2


@zw + u@x�+ v@y�+ w@z� = 0:

(2.1)

where the primitive variables, q = (u; v; w; p; �)T , represent velocity, pressure, and internal energy, and are

related to the density, �, and the speed of sound, c, through the following equations:

p = ( � 1)��;(2.2)

c2 = p=�;(2.3)

where  is the ratio of speci�c heats.

In an iterative (quasi-Newton) procedure, the correction �q = qn+1�qn, where n is an iteration counter,

can be computed from the equation

L �q = �R(q);(2.4)

where L is the principal linearization of the operator R(q). Thus,

L =

2
6666664

Q 0 0 1
�
@x 0

0 Q 0 1
�
@y 0

0 0 Q 1
�
@z 0

�c2@x �c2@y �c2@z Q 0
c2


@x

c2


@y

c2


@z 0 Q

3
7777775
;(2.5)

where Q = �u@x + �v@y + �w@z = (�u � r), and the coe�cients �u = (�u; �v; �w); �, and c2 are evaluated from the

approximation qn and, for the current iteration, are considered as constants unrelated to the target primitive
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variables. The determinant of the matrix operator L is

Q3
�
Q2 � c24� ;(2.6)

where 4 is the Laplace operator. The convection operators, Q, and the full-potential operator, Q2 � c24,

represent hyperbolic and elliptic partitions of the Euler equations.

3. Distributed Relaxation. The distributed relaxation method for the Euler equations replaces �q

in (2.4) by M �w, where

M =

2
6666664

1 0 0 � 1
�
@x 0

0 1 0 � 1
�
@y 0

0 0 1 � 1
�
@z 0

0 0 0 Q 0

0 0 0 0 1

3
7777775
;(3.1)

so that the resulting matrix LM becomes lower triangular, as

LM =

2
6666664

Q 0 0 0 0

0 Q 0 0 0

0 0 Q 0 0

�c2@x �c2@y �c2@z Q2 � c24 0
c2


@x

c2


@y

c2


@z � c2

�
� Q

3
7777775
;(3.2)

and

LM �w = �R(q):(3.3)

The main diagonal of LM is composed of the factors of the matrix L determinant. The distributed relaxation

approach yields fast convergence if the constituent scalar diagonal operators in LM are solved with e�cient

methods.

An e�cient solver for the convection factor, Q, can be based on downstream marching, with additional

special procedures for recirculating ows [11, 12, 16, 28]. The full-potential factor, Q2�c24, is an operator of

variable type, and its solution requires di�erent procedures in subsonic, transonic, and supersonic regions. In

subsonic regions, the full-potential operator is uniformly elliptic; therefore standard multigrid methods yield

optimal e�ciency. When the Mach number approaches unity, the operator becomes increasingly anisotropic

and, because some smooth error components cannot be approximated adequately on coarse grids, classical

multigrid methods severely degrade. In supersonic regions, the full-potential operator is uniformly hyperbolic

with the stream direction serving as the time-like direction. In this region, an e�cient solver can be obtained

with a downstream marching method. However, downstream marching becomes problematic when the

Mach number drops towards unity, because marching steps allowed by the stability condition are too short.

Thus, a special procedure is required to provide an e�cient solution for transonic regions. A possible

procedure [7, 8, 14] is based on piecewise semicoarsening and some rules for adding dissipation at the coarse

grid levels.

4. Discrete Equations. Having in mind the distributed relaxation procedure outlined in the previous

Section 3, one would like to design a discretization for nonlinear operator R(q) of (2.1) that has the discrete

principal linearization operator, Lh, satisfying properties (1) and (2) listed in Section 1. For nonconservative
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formulations, the discretization of the nonlinear operator directly follows Lh. Derivation of conservative

discretization schemes corresponding to a given discrete principal-linearization operator has been discussed

in [15].

In this section, we consider two factorizable discretizations for the matrix operator L of (2.5): the basic

discretization , Lh
basic, and an improved discretization, Lh. The basic collocated-grid discretization Lh

basic of

the matrix operator L is de�ned as

Lh
basic =

2
6666664

Qh 0 0 1
�
@hx 0

0 Qh 0 1
�
@hy 0

0 0 Qh 1
�
@hz 0

�c2@hx �c2@hy �c2@hz
�Qh 0

c2


@hx

c2


@hy

c2


@hz 0 Qh

3
7777775
;(4.1)

where the discrete derivatives, @hx ; @
h
y ; @

h
z , in all o�-diagonal positions are the second-order accurate central-

di�erencing approximation. All the diagonal terms, Qh, except �Qh in the fourth equation, are discretized

with the same second-order accurate upwind (or upwind-biased) discretization scheme. In the subsonic

regime (j�uj2 = �u2 + �v2 + �w2 < c2), the term �Qh is discretized with a second-order accurate downwind (or

downwind-biased) discretization.

The determinant of the matrix operator Lh
basic is given by�

Qh
�3 �

Qh �Qh � c242h
�
;(4.2)

where 42h is a wide (with mesh spacing 2h) discretization of the Laplace operator. The full-potential

operator approximation appearing in the brackets has two major drawbacks:

(1) The approximation is not h-elliptic, i.e., it admits spurious oscillatory solutions for the discrete

homogeneous equation.

(2) For near-sonic regimes (Mach number M = j�uj=c � 1), the discrete operator stencil does not reect

the physical anisotropies of the di�erential full-potential operator. The discrete operator exhibits

very strong coupling in the streamwise direction, while the di�erential operator has strong coupling

only in the cross-stream directions.

An improved discrete full-potential operator can be obtained if the discretization �Qh is changed to

�Qh +Ah. Then the discrete full-potential operator in (4.2) becomes

Fh = QhAh +Qh �Qh � c242h:(4.3)

If the operatorAh is second-order small (proportional to h2), the overall second-order discretization accuracy

is not compromised. The choice of Ah used here is Ah =
�
Qh
��1

Dh;Dh = Fh � (Qh �Qh � c242h), where

Fh is a desired approximation for the full-potential factor. We do not discuss in this paper the optimal

discretization for the multidimensional subsonic full-potential operator. Note only that it is possible to

construct a discretization that satis�es the following properties:

(1) For subsonic Mach numbers, the discretization is h-elliptic; in the limit of the zero Mach number, it

is dominated by the narrow (with mesh spacing h) h-elliptic Laplace operator.

(2) For the Mach number approaching unity, the discretization correctly reects the physical anisotropies

and tends to the optimal discretization for the sonic-ow full-potential operator (see [7, 8, 14]).

(3) For supersonic Mach numbers, the discretization becomes upwind (or upwind-biased) and can be

solved by marching.
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The operator Ah is a nonlocal operator acting on ph and can be introduced through a new auxiliary

variable  h = Ahph and a new discrete equation Qh h = Dhph. Thus, the new vector of discrete unknowns

becomes qh = (uh; vh; wh;  h; ph; �h)T . The discrete operator Lh
basic is changed to Lh, such that

Lh =

2
6666666664

Qh 0 0 0 1
�
@hx 0

0 Qh 0 0 1
�
@hy 0

0 0 Qh 0 1
�
@hz 0

0 0 0 Qh �Dh 0

�c2@hx �c2@hy �c2@hz 1 �Qh 0
c2


@hx

c2


@hy

c2


@hz 0 0 Qh

3
7777777775
:(4.4)

The corresponding distribution matrix, Mh, is de�ned as

Mh =

2
6666666664

1 0 0 0 � 1
�
@hx 0

0 1 0 0 � 1
�
@hy 0

0 0 1 0 � 1
�
@hz 0

0 0 0 1 Dh 0

0 0 0 0 Qh 0

0 0 0 0 0 1

3
7777777775
;(4.5)

so that the resulting matrix LhMh becomes lower triangular as

LhMh =

2
6666666664

Qh 0 0 0 0 0

0 Qh 0 0 0 0

0 0 Qh 0 0 0

0 0 0 Qh 0 0

�c2@hx �c2@hy �c2@hz 1 Fh 0
c2


@hx

c2


@hy

c2


@hz 0 � c2

�
�2h Qh

3
7777777775
:(4.6)

5. One-Dimensional Model Problem. The set of the quasi-one-dimensional nonconservative Euler

equations is given by

u@xu+
1
�
@xp = 0;

�c2@xu+ u@xp = �pu�x
�
;

( � 1)�@xu+ u@x� = �( � 1)�u�x
�
;

(5.1)

where �(x) is the area distribution. The principal linearization of the operator in (5.1), in the limit as h

tends to zero, is 0
B@

�u@x
1
�
@x 0

�c2@x �u@x 0

( � 1)��@x 0 �u@x

1
CA ;(5.2)

in which the coe�cients �u; �; c, and �� are constants unrelated to the unknown functions (u; p; �). The third

equation is decoupled from the other equations. Thus, for the purpose of analysis, one can focus on the

system of two constant-coe�cient equations

L q = f ;(5.3)
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where

L =

 
�u@x

1
�
@x

�c2@x �u@x

!
;(5.4)

f = (f1; f2)
T , and q = (u; p)T . For the subsonic ow regimes, a natural set of boundary conditions for this

model problem is u speci�ed at the inow boundary and p speci�ed at the outow boundary. With this set

of boundary conditions, the di�erential problem (5.3) is well posed.

The analysis presented in this section compares the exact di�erential and discrete solutions for u and p

obtained for the model problem (5.3). Let the exact solution of (5.3) de�ned on the interval x 2 [0; 1] be

qexact(x) =

 
uexact

pexact

!
=

 
Cu

Cp

!
ei�x;(5.5)

where � is an arbitrary frequency. Then 
f1(x)

f2(x)

!
=

 
�f1
�f2

!
ei�x;

 
�f1
�f2

!
=

 
�uCu +

1
�
Cp

�c2Cu + �uCp

!
i�:(5.6)

The system (5.3) is subject to boundary conditions

u(0) = Cu; p(1) = Cpe
i�:(5.7)

The distribution matrix M,

M =

 
1 � 1

�
@x

0 �u@x

!
;(5.8)

results in

LM =

 
�u@x 0

�c2@x F

!
:(5.9)

The main diagonal of matrix LM is composed of the convection operator �u@x and the full-potential operator

F = (�u2 � c2)@xx. The one-dimensional problem is very speci�c for at least two reasons:

(1) The full-potential factor vanishes at the sonic speed (�u = c).

(2) The characteristics perfectly align with the grid.

Both these features disappear in multiple dimensions.

The corresponding discrete problem is de�ned on a uniform grid with mesh size h as

Lh q
h = fh;(5.10)

where Lh is a discretization of L, and qhj = (uhj ; p
h
j )
T and fhj = (f1(jh); f2(jh))

T are discrete representations

of the solutions and source functions, respectively, and j = 0; 1; 2; : : : ; N; N = 1=h. The general solution to

(5.10) can be sought as a combination of a particular solution and the general solution to the corresponding

homogeneous problem

Lh q
h = 0:(5.11)

A particular solution can be found in the form

qhpar =

 
uhpar

phpar

!
j

=

 
û

p̂

!
ei!j ;(5.12)
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û

p̂

!
=
�
Lh(e

i!)
��1 �f1

�f2

!
;(5.13)

where ! = �h is a normalized frequency, and Lh(�) is a generalized matrix symbol of the discrete operatorLh.

The entries of Lh(�) are generalized symbols of the discrete scalar operators composing Lh that are de�ned

as responses of these operators on the exponent function �j . For example, the generalized symbol, @c(�), of

the central second-order accurate di�erence approximation to the �rst derivative, @c, is @c�j = @c(�)�j ,

@c(�) = 1
2h

�
�� 1

�

�
.

The general solution, qhhom, of the homogeneous system of equations (5.11) is a combination of linearly

independent characteristic solutions zk = vk�
j
k, where �k are the roots of the characteristic polynomial

detLh(�) = 0:(5.14)

qhhom =

 
uhhom
phhom

!
j

=
X
k

ckzk(j) =
X
k

ckvk�
j
k:(5.15)

The general solution of the discrete problem (5.10) is

qh = qhhom + qhpar =
X
k

ckzk(j) +

 
û

p̂

!
ei!j :(5.16)

Parameters ck are chosen to satisfy a set of discrete boundary conditions. The discretization error function

is de�ned as

qh � qhexact;(5.17)

where qhexact is a restriction of qexact(x) to the grid with the mesh size h.

Below, the discretization errors for four discrete factorizable schemes approximating (5.3) are compared:

Scheme # 1. The \basic" scheme of the (4.1) type.

Scheme # 2. The standard upwind discrete scheme.

Scheme # 3. The discrete scheme of the (4.4) type with the discretization for the full-potential

factor given as

Fh =
�
�u2 � c2

�
@u@d;(5.18)

where the discrete operators, @u and @d, are second-order accurate upwind and downwind di�erence

approximations to the �rst derivative, respectively.

(4) Scheme # 4. The discrete scheme of the (4.4) type with the discretization for the full-potential

factor given as

Fh =
�
�u2 � c2

�
@hxx;(5.19)

where the discrete operator @hxx is a three-point central approximation to the second derivative.

All the schemes, except the standard upwind scheme (2), are factorizable in multiple dimensions. The

discrete boundary conditions for all the four schemes are overspeci�ed, i.e., the discrete-solution values at

the boundary and, wherever necessary, outside of the target computational domain are speci�ed from the

known exact solution (5.5).
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5.1. Scheme # 1. The one-dimensional version of the \basic" collocated-grid discretization for matrix

operator L of (5.3) is de�ned as

L
(1)
h q(1) = fh;(5.20)

L
(1)
h =

"
�u@u 1

�
@c

�c2@c �u@d

#
:(5.21)

Recall that the discrete derivatives, @u; @c; and @d, are second-order accurate upwind, central, and downwind

di�erence approximations, respectively.

The generalized symbol for the operator L
(1)
h is de�ned as

L
(1)
h (�) =

 
�u@u(�) 1

�
@c(�)

�c2@c(�) �u@d(�)

!
;(5.22)

where

@u(�) = 1
h

�
3
2 � 2 1

�
+ 1

2
1
�2

�
;

@d(�) = 1
h

�� 3
2 + 2�� 1

2�
2
�
;

@c(�) = 1
h

�
1
2�� 1

2
1
�

�
:

(5.23)

A particular solution to (5.20) is

q(1)par =

 
û(1)

p̂(1)

!
ei!j ;(5.24)

where

û(1) =
�u@d(ei!) �f1� 1

�
@c(ei!) �f2

�u2@u(ei!)@d(ei!)�c2(@c(ei!))2 ;

p̂(1) = ��c2@c(ei!) �f1+�u@u(ei!) �f2
�u2@u(ei!)@d(ei!)�c2(@c(ei!))2 :

(5.25)

A set of linearly independent characteristic solutions zk(j) = vk�
j
k is given by

v1 =

 
1

0

!
and v2 =

 
0

1

!
;(5.26)

which corresponds to �1;2 = 1;

v3 =

 
1

���u@u(�3)
@c(�3)

!
;(5.27)

which corresponds to �3 =
5�u2�c2�4�up�u2�c2

3�u2+c2 ; and

v4 =

 
1

���u@u(�4)
@c(�4)

!
(5.28)

which corresponds to �4 =
5�u2�c2+4�up�u2�c2

3�u2+c2 .

The characteristic solutions zk are normalized to satisfy max
j
jzk(j)j = O(1) as h tends to zero. The

characteristic solutions z1 and z2 correspond to solutions of the target di�erential problem; the characteristic
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solutions z3 and z4 are numerical artifacts. Note that in subsonic regimes, j�3j = j�4j = 1; this implies

existence of global discrete solutions that do not approximate solutions of the di�erential problem. These

spurious solutions are a source of instability of the discrete approximation (5.20). Details are given in

Appendix A. For stable approximations, characteristic solutions unrelated to the di�erential solutions should

be local, i.e., they should correspond to j�kj 6= 1. The coe�cients ck are computed from a 4�4 linear system
that arises after substituting the general solution into the boundary condition equations

(i) uh0 = Cu;

(ii) �u
h

�
3
2u

h
1 � 2uh0 +

1
2u

h
�1
�
+ 1

�h

�
1
2p

h
2 � 1

2p
h
0

�
= f1(h);

(iii) �c2

h

�
1
2u

h
N � 1

2u
h
N�2

�
+ �u

h

�
� 3

2p
h
N�1 + 2phN � 1

2p
h
N+1

�
= f2(1� h);

(iv) phN = Cpe
i�;

(5.29)

where values uh�1; p
h
0 ; u

h
N , and p

h
N+1 are speci�ed from the exact solution (5.5).

5.2. Scheme # 2. A one-dimensional version of the standard upwind scheme for matrix operator L

of (5.3) is de�ned as

L
(2)
h q(2) = fh;(5.30)

L
(2)
h =

"
�u+c
2 @u + �u�c

2 @d �u+c
2�c @

u � �u�c
2�c @

d

�c(�u+c)
2 @u � �c(�u�c)

2 @d �u+c
2 @u + �u�c

2 @d

#
:(5.31)

The following four boundary conditions (two from the left and two from the right) are used by the

interior discretizations:

(i) 1
2u

h
0 +

1
2�cp

h
0 = 1

2Cu +
1
2�cCp;

(ii) 1
2u

h
�1 +

1
2�cp

h
�1 =

�
1
2Cu +

1
2�cCp

�
e�i!;

(iii) 1
2u

h
N+1 � 1

2�cp
h
N+1 =

�
1
2Cu � 1

2�cCp

�
ei!(N+1);

(iv) 1
2u

h
N � 1

2�cp
h
N =

�
1
2Cu � 1

2�cCp

�
ei!N :

(5.32)

A particular solution can be found in the form

q(2)par =

 
û(2)

p̂(2)

!
ei!j ;(5.33)

where

û(2) =
( �u+c2 @u(ei!)+ �u�c

2
@d(ei!)) �f1� 1

�c (
�u+c
2

@u(ei!)� �u�c
2

@d(ei!)) �f2
(�u2�c2)@u(ei!)@d(ei!) ;

p̂(2) =
��c( �u+c2 @u(ei!)� �u�c

2
@d(ei!)) �f1+( �u+c2 @u(ei!)+ �u�c

2
@d(ei!)) �f2

(�u2�c2)@u(ei!)@d(ei!) :

(5.34)

A set of linearly independent characteristic solutions zk(j) = vk�
j
k is given by

v1 =

 
1

0

!
and v2 =

 
0

1

!
;(5.35)

which corresponds to �1;2 = 1;

v3 =

 
1

�c

!
;(5.36)
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which corresponds to �3 =
1
3 ; and

v4 = (�4)
�N
 

1

��c

!
(5.37)

which corresponds to �4 = 3. The characteristic solutions z1 and z2 approximate solutions of the di�erential

equations; the characteristic solutions z3 and z4 are local. The discrete scheme (5.30) is stable. The

coe�cients ck are found by substituting the general solution into (5.32).

5.3. Scheme # 3. A factorizable scheme corresponding to (4.4) is de�ned as

L
(3)
h q(3) = fh;(5.38)

L
(3)
h =

0
B@

�u@u 0 1
�
@c

0 �u@u �Dh

�c2@c 1 �u@d

1
CA ; q(3) =

0
B@

uh

 h

ph

1
CA ; fh =

0
B@

f1(jh)

0

f2(jh)

1
CA ;(5.39)

Dh = Fh �
�
�u2@u@d � c2 (@c)2

�
;(5.40)

and the desired discrete full-potential operator is given by

Fh = (�u2 � c2)@u@d:(5.41)

The overspeci�ed boundary conditions, where values of uh�1; u
h
0 ; u

h
N ; u

h
N+1; p

h
�1; p

h
0 ; p

h
N ; and phN+1 are

speci�ed from the exact di�erential solution (5.5), and  h�1 =  h0 =  hN =  hN+1 = 0, are equivalent to the

following six boundary conditions:

(i) uh0 = Cu;

(ii) �u@uuh1 +
1
�
@cph1 = f1(h);

(iii) �u@u h1 �Dhph1 = 0;

(iv) �u@u h2 �Dhph2 = 0;

(v) �c2@cuhN�1 +  hN�1 + �u@dphN�1 = f2(1� h);

(vi) phN = Cpe
i�:

(5.42)

In evaluation of (v), the value of  hN�1 is computed from the equation �u@u hN�1 �DhphN�1 = 0.

A particular solution of the nonhomogeneous problem can be found as

q(3)par =

0
B@

û(3)

 ̂(3)

p̂(3)

1
CA ei!j ;(5.43)

where

û(3) = 1
�u@u(ei!)

�
�f1 � @c(ei!)

�

�
��c2@c(ei!) �f1+�u@u(ei!) �f2

Fh(ei!)

��
;

 ̂(3) = Dh(ei!)
�u@u(ei!)

�
��c2@c(ei!) �f1+�u@u(ei!) �f2

Fh(ei!)

�
;

p̂(3) = ��c2@c(ei!) �f1+�u@u(ei!) �f2
Fh(ei!)

:

(5.44)
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The generalized symbols @u(�); @c(�), and @d(�) are de�ned in (5.23) and

Fh(�) = (�u2 � c2)@u(�)@d(�);

Dh(�) = c2
�
(@c(�))2 � @u(�)@d(�)

�
= c2

h2

�
1
�2
� 4 1

�
+ 6� 4�+ �2

�
:

(5.45)

The six linearly independent characteristic solutions, zk(j) = vk(j)�
j
k , are given by

v1 =

0
B@

1

0

0

1
CA ;v2 =

0
B@

0

0

1

1
CA ; and v3 =

0
BB@

jh

�c2
�
�u2

c2
� 1
�

�jh��u

1
CCA(5.46)

which corresponds to �1;2;3 = 1,

v4 =

0
B@

h

��c2h@c(�4)
0

1
CA =

0
B@

h
4
3�c

2

0

1
CA

and

v5 =

0
BB@

jh

�c2h
�
�u2

c2
@d(�5)@̂u(�5)

@c(�5)
� @̂c(�5)� j@c(�5)

�
�h��u @̂u(�5)

@c(�5)

1
CCA =

0
BB@

jh

�c2
�
�2 �u2

c2
� 5

3 + j 43

�
� 9

4h��u

1
CCA ;

(5.47)

which corresponds to �4;5 =
1
3 , where @̂

u(�) = 1
h

�
2 1
�
� 1

�2

�
and @̂c(�) = 1

h

�
1
2
1
�
+ 1

2�
�
;

and

v6 = (�6)
�N

0
B@

h

��c2h@c(�6)
�h��u@u(�6)

@c(�6)

1
CA = (�6)

�N

0
B@

h

� 4
3�c

2

�h 2
3��u

1
CA ;(5.48)

which corresponds to �6 = 3. The characteristic solutions are normalized to satisfy max
j
jzk(j)j = O(1) for

h tending to zero.

5.4. Scheme # 4. Another factorizable scheme belonging to the family (4.4) is de�ned as

L
(4)
h q(4) = fh;(5.49)

where L
(4)
h is similar to L

(3)
h with the desired discretization for the full-potential factor given as

Fh = (�u2 � c2)@hxx;(5.50)

where @hxx is a three-point central second-order accurate approximation to the second derivative. The vector-

function q(4) is de�ned similar to q(3).

A particular solution can be found in the form of (5.43) and (5.44) with the generalized symbols

Fh(�) = (�u2 � c2)@hxx(�) =
�u2�c2
h2

�
1
�
� 2 + �

�
;

Dh(�) = Fh(�)� ��u2@u(�)@d(�)� c2(@c(�))2
�
:

(5.51)

The \maximal-length footprint" stencil of the L
(4)
h determinant operator computed before any cancella-

tion occur includes seven points. Based on this stencil, the corresponding characteristic equation is formed

as

�u(�u2 � c2)

2h

�
0
1

�4
+

1

�3
� 6

1

�2
+ 12

1

�
� 10 + 3�+ 0�2

�
= 0:(5.52)
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For the characteristic equation, zero coe�cients in the leftmost positions imply zero roots, and, in the

rightmost positions, they imply in�nite roots. Six roots of equation (5.52) are �1;2;3 = 1, �4 =
1
3 , �5 = 0,

and �6 =1.

The solution representation as a linear combination of the functions zk = vk�
j
k is relevant only for �nite

�k 6= 0. For �k = 0, the corresponding characteristic solutions are localized at the inow boundary, i.e., they

exhibit nonzero values at the inow and are zero in the interior and at the outow boundary. By analogy,

characteristic solutions which corresponds to �k = 1 are localized at the outow boundary, i.e., they are

nonzero only at some locations in the vicinity of the outow boundary.

Four linearly independent characteristic solutions which corresponds to �nite (nonzero) �k can be found

in the usual form zk(j) = vk�
j
k.

v1 =

0
B@

1

0

0

1
CA ;v2 =

0
B@

0

0

1

1
CA ; and v3 =

0
B@

jh

�
�
�u2 � c2

�
�jh��u

1
CA(5.53)

correspond to �1;2;3 = 1, and

v4 =

0
B@

h

�h�c2@c(�4)
0

1
CA =

0
B@

h
4
3�c

2

0

1
CA(5.54)

corresponds to �4 =
1
3 .

The characteristic solution z5 localized at the inow (i.e., corresponding to �5 = 0) is

z5(j) =

0
B@

h �0j
� 3�u

2+c2

2 �1j
��uh �1j

1
CA ;(5.55)

and the characteristic solution z6 localized at the outow (i.e., corresponding to �6 =1) is

z6(j) =

0
B@

h �N�1j

�� 3�u2+c22 �N�2j

�3��uh �Nj

1
CA ;(5.56)

where

�mj =

(
0; if m 6= j;

1; if m = j:
(5.57)

Coe�cients ck; k = 1; : : : ; 6 can be found by substituting the general solution into the boundary condition

equations that are similar to (5.42) with discretization Dh (5.40) corresponding to Fh de�ned in (5.50).

5.5. Discretization Errors. In this section, the L1 norms of discretization errors in p for Schemes # 1

through # 4 are compared for the constant-coe�cient problems corresponding to di�erent Mach numbers

(M = 0:01; 0:5; 0:99, and M� =
q

13+8
p
2

41 � 0:88). The value of M� has been chosen to illustrate an erratic

convergence history for the Scheme # 1. More details are given in Appendix A. The constant coe�cients

nondimensionalized with respect to the density and the speed of sound at the sonic conditions are de�ned as

c =

r
1+ �1

2

1+M2 �1
2

;

� = c
2

�1 ;

�u = cM;

(5.58)
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Fig. 5.1. L1 norms of discretization errors in pressure.

where  = 1:4. The parameters of the exact di�erential solution de�ned on the interval x 2 [0; 1] have been

chosen as Cu = 1; Cp = 2, and � = 7�. The L1 norms of discretization errors in pressure, p, plotted on

Figure 5.1 have been computed for solutions on a sequence of uniform grids with h = 2�4; 2�5; : : : ; 2�15.

For low to medium subsonic Mach numbers, the discretization errors of the new factorizable schemes

(# 3 and # 4) are very competitive with the discretization errors of standard schemes (# 1 and # 2) on

all the grids. In this range of Mach numbers, the discretization errors of Scheme #4 are smaller than the

discretization errors of Scheme #3. The discretization accuracy of Scheme # 3 di�ers from the accuracy of

Scheme # 4 because of the di�erence in the �ve-point and three-point approximations to the full-potential

factor. The di�erences vanish as the Mach number tends to unity because the contribution of the full-

potential factor becomes negligible.

For subsonic Mach numbers approaching unity, the characteristic-upwinding Scheme # 2 is obviously

superior, exhibiting discretization errors that are nearly two orders of magnitude smaller that the discretiza-

tion errors achieved by other schemes on the same grids. Although not shown in the �gures, the situation is

similar for errors in velocity at Mach numbers approaching zero. Scheme # 2 in one dimension is very close

to ideal because the entire system can be cast as three scalar convection equations. A standard dimension-
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by-dimension extension to multiple dimensions loses this property as well as the more fundamental property

of discrete factorizability. Thus, in multiple dimensions, the new factorizable schemes proposed in this paper

are expected to o�er comparable accuracy and considerable improvements in e�ciency.

As shown in Figure 5.1, convergence of discretization errors for Scheme # 1 may be very erratic. This

behavior is explained by presence of the spurious global solutions. In particular, the choice of the Mach

number M = M� corresponds to the spurious solutions varying as e�i
�
4
j . A pattern of discretization error

increases on each fourth grid is notable in the test with M = M�. Analysis performed in Appendix A

con�rms that the discretization error convergence rates for this scheme do not settle to any particular value.

The mean convergence, however, obeys the order property. The convergence rate pattern is dictated by

the characteristic frequency of the spurious solutions. The new factorizable schemes overcome this disorder

and exhibit monotonic convergence rates with an asymptote determined by the approximation order of the

discretizations in the interior.

Another interesting feature associated with the new factorizable schemes is the asymptotic behavior of

the auxiliary discrete function  h. The amplitude of this function is O(h) in some O(h)-small neighborhoods

of the boundaries and decreases exponentially quickly to O(h2)-size in the interior. This behavior does not

compromise the second-order accuracy in the physical variables uh and ph. It is explained by interactions

of the interior discretizations with the overspeci�ed boundary conditions. The amplitude of  h becomes

uniformly O(h2)-small if another set of boundary conditions that better suit the interior discretizations is

applied.

6. Multigrid Method. An FMG algorithm solves the target-grid equations proceeding from the coars-

est grid to �ner grids. The goal of the algorithm is fast reduction of the current-grid algebraic errors below

the level of discretization errors, before interpolating solutions to the next �ner grid. The algebraic errors

on a given grid, which are de�ned as the di�erences between the approximate and exact discrete solutions,

are reduced through a Full Approximation Scheme (FAS) [3, 4, 13, 22, 26, 27] multigrid cycle, in which

corrections to the �ne-grid nonlinear equations are obtained from coarser grid solutions. The FMG-FAS

method is described below by means of a two-grid notation, in which the �ne grid is denoted by superscript

h and the coarse grid by superscript 2h.

Let the �ne-grid nonlinear equations be de�ned as

Rh(qh) = fh:(6.1)

The initial �ne-grid solution approximation qh is prolonged from the coarse-grid solutions q2h, as

qh = P̂ q2h;(6.2)

where P̂ denotes a prolongation operator used by the FMG algorithm for solution interpolation; the \hat"

notation is applied to distinguish from the prolongation operator P used within FAS multigrid cycles for

interpolation of coarse-grid corrections. After forming the initial �ne-grid solution approximation qh, a two-

level FAS multigrid cycle is applied as following: Several (or perhaps one or even zero) relaxation sweeps

are applied to the �ne-grid equations to obtain an improved solution approximation ~qh. The coarse-grid

equations at level 2h to be solved for corrections to ~qh are de�ned as

R2h(q2h) = R2h(R̂~qh) +R(fh �Rh(~qh));(6.3)

where R̂ and R denote restriction operators for transferring the �ne-grid solutions and residuals to the coarse

grid, respectively. These coarse-grid equations are then solved by some iterative method (or directly if the
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grid is coarse enough). The corrections from the coarse-grid (grid 2h) solutions are prolonged to the �ne

grid as

~qh = ~qh + P(q2h � R̂~qh):(6.4)

Several relaxation sweeps follow the coarse-grid correction interpolation to complete one FAS multigrid cycle.

ν0ν0

ν2

ν2

FV(ν1,ν2) Cycle

4-levels

Ω8h:

Ω2h:

Ωh:

Ω4h:

ν1

ν0

ν2

ν1ν1

ν1

ν2

Fig. 6.1. Schematic of the 4-level FV(�1; �2) cycle, where �0 denotes the number of relaxation sweeps on the coarsest

mesh and 
h denotes the grid with mesh spacing h.

In multilevel versions of the FAS cycle, the coarse-grid equations are themselves solved with  cycles of

the algorithm applied recursively, where  = 1 would correspond to a V cycle and  = 2 to a W cycle. In our

numerical tests, a version of the V cycle, termed FV(�1; �2) cycle, is used. The multilevel FV(�1; �2) cycle

has been employed earlier in [24] and is derived from the target-grid two-level FAS cycle described above by

applying a multilevel FMG algorithm with the V(�1; �2) cycle to solve the coarse-grid equations. Parameters

�1 and �2 denote the number of relaxation sweeps on the downward and upward legs of the cycle. The cycle

is sketched in Figure 6.1.

The distributed relaxation method has been applied as described in Sections 3 and 4. The notations Lh

and Mh are used below for the principal linearization of the operator Rh of (6.1) and the corresponding

distribution matrix, respectively. The values of auxiliary variables �wh have been overspeci�ed outside of the

computational domain by zeros wherever it is necessary. The convection operators in the LhMh matrix have

been solved by downstream marching. The full-potential operator has been relaxed with downstream Gauss-

Seidel relaxation sweeps. The inter-grid transfer operators are the following: The prolongation operators,

P̂ and P , are the second-order symmetric linear interpolations of the primitive-variable corrections. The

operatorR restricting residuals is the second-order full-weighting operator. The solution-restriction operator

R̂ is the injection operator.

7. Numerical Tests. The results of numerical solutions of nonlinear nonconservative equations corre-

sponding to quasi-one-dimensional subsonic ow in a convergent-divergent channel are reported in this sec-

tion. The di�erential equations are (5.1) with x 2 [0; 1] and the area distribution term �(x) = 1�0:8x(1�x)
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(a) 5-pt full-potential discretization (b) 3-pt full-potential discretization.

Fig. 7.1. Maximum discretization errors versus grid size.

Two factorizable discrete schemes approximating (5.1) are tested

uhj @
uuhj +

(�1)�hj
phj

@cphj = 0;

uhj @
u hj �Dhphj = 0;

phj @
cuhj + �hj + uhj @

dphj = �phj uhj
@c�hj

�hj
;

( � 1)�hj @
cuhj + uhj @

u�hj = �( � 1)�hj u
h
j

@c�hj

�hj
;

(7.1)

where �hj = �(jh), and

Dh
1p

h
j =

(�1)�hj
h2

(phj�2 � 4phj�1 + 6� 4phj+1 + phj+2)

or

Dh
2p

h
j =

3(uhj )
2+(�1)�hj
4h2 (phj�2 � 4phj�1 + 6� 4phj+1 + phj+2):

(7.2)

Table 7.1

The L2-norm of discretization errors in p and the ratio of algebraic-to-discretization errors for the FMG-1 solver with

FV(2,2) cycles.

5-pt 3-pt

h jjedjj : p jjeajj/jjedjj : p jjedjj : p jjeajj/jjedjj : p
1/32 0.6721x10�3 0.004 0.3343x10�3 0.03

1/64 0.1441x10�3 0.02 0.8585x10�4 0.01

1/128 0.3579x10�4 0.02 0.2153x10�4 0.01

1/256 0.8374x10�5 0.02 0.5391x10�5 0.01

1/512 0.2098x10�5 0.01 0.1350x10�5 0.01

The principal linearization operator and the distribution matrix used in distributed relaxation are one-

dimensional versions of (4.4) and (4.5). The discrete equations are solved with an FMG-1 algorithm em-

ploying one FV(2, 2) cycle on each grid. The coarsest grid corresponds to h = 1=16. The discrete boundary
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conditions are overspeci�ed on each grid from the exact di�erential solution of the fully subsonic ow prob-

lem with the inow Mach number M = 0:5. The maximum discretization errors versus mesh size shown in

Figure 7.1 demonstrate the second-order spatial convergence. In Table 7.1, the ratios of the algebraic error

in the L2-norm to the discretization error in this norm for the FMG-1 algorithm are quite small at each grid.

The complexity of this solver is about 30 minimal work units, where a minimal work unit is de�ned as the

number of operations required for one target-grid residual evaluation. The number is relatively large as is

typical for one dimension; in two dimensions the complexity of this algorithm would be about 9.3 minimal

work units, representing TME according to the de�nition given at the beginning of the paper.

The residual convergence history versus FV(2,2) multigrid cycles are shown in Figure 7.2. The equations

are numbered according to (7.1). The convergence rates are grid-independent and are roughly one order of

magnitude per cycle. The discretization with the three-point full-potential factor shows slightly better

convergence rates, although, the rates are slightly slower than the asymptotic convergence rate expected

if solving only the scalar three-point full-potential equation. Although not shown, the convergence rates

somewhat deteriorate when a multigrid V cycle is used instead of the FV cycle.
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(a) 5-pt full-potential discretization (b) 3-pt full-potential discretization.

Fig. 7.2. Residual convergence for the FMG algorithm with �ve FV(2,2) multigrid cycles at each grid level for the

nonconservative equations (7.1).

8. Concluding Remarks. A multigrid method is de�ned as having textbook multigrid e�ciency

(TME) if solutions to the governing system of equations are attained in a computational work that is a

small (less than 10) multiple of the operation count in one target-grid residual evaluation. A way to achieve

TME for the Navier-Stokes equations is to apply the distributed relaxation method separating the elliptic

and hyperbolic partitions of the equations. Design of a distributed relaxation scheme for the Navier-Stokes

systems can be signi�cantly simpli�ed if the target discretization possesses two properties: (1) factorizability

and (2) consistent approximations for scalar factors.

The paper has introduced a new family of factorizable discrete schemes for the multidimensional Eu-

ler equations. The schemes include a mechanism that allows one to obtain any desired discretization for

the full-potential factor of the system determinant without compromising the scheme factorizability. This

property opens the door for applying the distributed relaxation technique leading to TME in complicated

computational uid dynamics simulations.
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The accuracy of the new schemes has been analyzed, compared with the accuracy of standard schemes,

and found competitive. TME and fast grid-independent residual convergence rates have been demonstrated

in solution of fully subsonic quasi-one-dimensional ow in a convergent/divergent channel.

Appendix A. Erratic Convergence of Basic-Scheme Discretization Errors.

In this appendix, an analysis of discretization errors for the basic scheme (5.20) is presented. This

analysis explains both the erratic convergence rates and the mean second-order convergence exhibited by

the discretization errors.

Taking the exact solution (5.5) of the di�erential problem as a Fourier component guarantees that the

particular solution (5.24) is a second-order accurate approximation, and that the di�erences between the

solutions converge asymptotically monotonically. Thus, a deviation from the monotonic convergence may

occur only because of coe�cients ck; k = 1; : : : ; 4; of the characteristic solutions zk to the homogeneous

problem. For the set of overspeci�ed boundary conditions (5.29), the coe�cients ck are found as

0
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and �3; �4; û
(1), and p̂(1) are de�ned in Section 5.1.

All the values bk converge to zero with second-order rates, and this provides a mean second-order

convergence for discretization errors. The determinant of T is a linear combination of some integer powers

(between �N and N) of �3. (Recall, that �4 = ��13 .) The sequence �N3 = eiN� does not converge to any

value as N tends to in�nity | rather it orbits the unit circle with the frequency determined by �; �, in

turn, is controlled by the Mach number. Therefore, the determinant of T is also oscillatory. Theoretically,

one could construct a set of boundary conditions and choose the Mach number so that T degenerates on a

particular grid. The discrete problem on this grid would become ill posed. Further grid re�nement would

unavoidably result in repeating (or closely approaching) ill-posedness on an in�nite number of grids. For

overspeci�ed boundary conditions, we did not �nd a Mach number and a grid to enforce the degeneration of

the matrix T. However, signi�cant variations of the absolute value of the determinant have been observed.

Figure A.1 presents a convergence history (circle symbols) for the L1 norms of discretization errors in

pressure. The parameters of the exact solution have been chosen as Cu = 1; Cp = 2; � = 7�. The Mach
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Fig. A.1. L1 norms of discretization errors (circles) and the history of the determinant of T(triangles) for the basic

discrete scheme with the overspeci�ed boundary conditions.

number,

M� =

s
5t2 + 8 + 8

p
t2 + 1

25t2 + 16
;(A.4)

with t = tan(�), corresponds to � = �=4. The number of grid points has been gradually increased (by 1)

rather than doubled in passing to the next �ne grid. For comparison, Figure A.1 exhibits the history of the

determinant of T (triangle symbols) as well. The discretization errors do not converge monotonically. Spikes

of large discretization errors occur periodically, closely following the pattern of the determinant T behavior:

smaller determinant values correspond to larger discretization errors. A mean second-order convergence rate

is observed.
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